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Abstract
Many scientific applications benefit from the accurate and efficient computation of deriva-

tives. Automatically generating these derivative computations from an applications source code
offers a competitive alternative to other approaches, such as less accurate numerical approxima-
tions or labor-intensive analytical implementations. ADIC2 is a source transformation tool for
generating code for computing the derivatives (e.g., Jacobian or Hessian) of a function given the
C or C++ implementation of that function. Often the Jacobian or Hessian is sparse and presents
the opportunity to greatly reduce storage and computational requirements in the automatically
generated derivative computation. ColPack is a tool that compresses structurally independent
columns of the Jacobian and Hessian matrices through graph coloring approaches. In this paper,
we describe the integration of ColPack coloring capabilities into ADIC2, enabling accurate and
efficient sparse Jacobian computations. We present performance results for a case study of a
simulated moving bed chromatography application. Overall, the computation of the Jacobian by
integrating ADIC2 and ColPack is approximately 40% faster than a comparable implementation
that integrates ADOL-C and ColPack when the Jacobian is computed multiple times.
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1. Introduction

Derivatives play an important role in scientific applications and other areas, including nu-
merical optimizations, solution of nonlinear partial differential equations, and sensitivity analy-
sis. Automatic differentiation (AD) is a family of techniques for computing derivatives given a
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program that computes some mathematical function. In general, given a code C that computes
a function f : x ∈ Rn 7→ y ∈ Rm with n inputs and m outputs, an AD tool produces code C′

that computes f ′ = ∂y/∂x, or the derivatives of some of the outputs y with respect to some of the
inputs x. We call x the independent variable and y the dependent variable and denote the Jaco-
bian matrix f ′(x) by J. Other quantities, such as Jacobian-vector products, can also be computed
through AD without explicitly forming J. The basic concepts of AD were introduced in 1950 [1,
p. 12], and the capabilities and popularity of AD tools have been growing over the past couple
of decades.

In many cases the Jacobian (or Hessian) being computed is sparse and can be compressed
to avoid storing and computing with zeros. Curtis, Powell, and Reid demonstrated that when
two or more columns of a Jacobian are structurally orthogonal (that is, there is no row in which
more than one column has a nonzero), they can be approximated simultaneously using finite
differences by perturbing the corresponding independent variables simultaneously [2]. Coleman
and Moré showed that the problem of identifying structurally orthogonal Jacobian columns can
be modeled as a graph coloring problem [3]. The methods developed for finite-difference ap-
proximations are readily adapted to automatic differentiation with appropriate initialization of
the seed matrix [4]. Exploiting sparsity while using AD can also yield better performance than
finite-difference (FD) approximations because AD computes the entire (compressed) Jacobian
simultaneously, whereas FD computes it one (compressed) column at a time.

1.1. Framework for Sparse Computation
Given a function f whose (m × n) derivative matrix J is sparse, the framework we employ to

efficiently compute the matrix J using AD involves the following four steps:

1. Determine the sparsity pattern of the matrix J.
2. Using a coloring on an appropriate graph of J, obtain an n × p seed matrix S with the

smallest p that defines a partitioning of the columns of J into p groups.
3. Compute the numerical values in the compressed matrix B ≡ JS .
4. Recover the numerical values of the entries of J from B.

The first and third steps of this scheme are necessarily carried out by an AD tool, whereas
the second and fourth steps could be performed by a separate, independent tool. This separation
of concerns offers an opportunity for a tool developed for the second and fourth steps to be
interfaced with any AD tool.

1.2. ColPack
ColPack [5] is a software package that comprises implementations of various algorithms for

graph coloring and recovery, that is, the second and fourth steps. The coloring models used come
in several variations depending on whether the derivative matrix to be computed is a Jacobian
(nonsymmetric) or a Hessian (symmetric) and whether the derivative matrix is compressed such
that the nonzero entries are to be recovered directly (with no additional arithmetic work) or
indirectly (by substitution). Table 1 gives an overview of the coloring models used in ColPack for
sparse Jacobian and Hessian computations. Figure 1 illustrates how a partitioning of the columns
of a Jacobian into structurally orthogonal groups is modeled as a (partial) distance-2 coloring of
the bipartite graph of the Jacobian.

Every problem listed in Table 1 is NP-hard to solve optimally [6, 7]. The algorithms in
ColPack for solving these problems are fast, and yet effective, greedy heuristics [5]. They are
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Table 1: Overview of graph coloring models used in ColPack for computing sparse derivative matrices. The Jacobian is
represented by its bipartite graph and the Hessian by its adjacency graph. NA stands for not applicable.

Matrix Unidirectional Partition Bidirectional Partition Recovery
Jacobian distance-2 coloring star bicoloring Direct
Hessian star coloring NA Direct
Jacobian NA acyclic bicoloring Substitution
Hessian acyclic coloring NA Substitution

Figure 1: Partitioning of a matrix into structurally orthogonal groups and its representation as a (partial) distance-2
coloring on a bipartite graph (of the matrix).

greedy in the sense that vertices are colored sequentially one at a time and the color assigned
to a vertex is never changed. The order in which vertices are processed in a greedy heuristic
determines the number of colors used by the heuristic. ColPack contains implementations of
various effective ordering techniques for each of the coloring problems it supports. ColPack is
written in an object-oriented fashion in C++ using the Standard Template Library (STL). It is
designed to be modular and extensible.

1.3. ADIC2

The implementation of AD tools is normally based on one of two approaches: operator over-
loading (e.g., ADOL-C [8]) or source-to-source transformation (e.g., TAPENADE [9], TAF [10],
TAC++ [11], OpenAD/F [12, 13], and ADIC2 [14]1).

ADIC2 is a component-based source-to-source transformation AD tool for C and C++ [14].
It can handle both forward mode and reverse mode AD. It is based on the ROSE compiler frame-
work [16, 17] and leverages several tools from the OpenAD project [13] as components. The
AD process as implemented by ADIC2 is described in detail in [14]. Figure 2 shows a sample
input and the output code generated by ADIC2. The type of each active variable2 is changed to
DERIV TYPE, which is a C structure containing a scalar value and a dense array for storing the
partial derivatives of each active variable w.r.t. each independent variable, as shown below.
t y p e d e f s t r u c t {

do ub l e v a l ;
do ub l e g rad [ADIC GRADVEC LENGTH ] ;

} DERIV TYPE ;

1A complete survey of AD tools and implementation techniques is outside the scope of this article; more information
is available at [15].

2Active variables lie on the computational path between independent and dependent variables.
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The derivative code generated by ADIC2 is compiled and linked to a runtime library that pro-
vides implementations of functions (or macros) for manipulating DERIV TYPE objects. Deriva-
tives are propagated by applying the chain rule to combine partial derivatives, which, in the
forward vector-gradient AD mode used in this example, involves summing different numbers of
scalar-grad array products. For example, an axpy2 operation Y ← Y + α1 ∗ X1 + α2 ∗ X2 will
access each element of X1.grad, X2.grad, and Y.grad and update Y.grad. The size of the array
(ADIC GRADVEC LENGTH) depends on the number of independent variables, and the number of
operations required depends on the number of active variables.

(a) Input code:
void mini1 ( double ∗y , double ∗x , i n t n )
{

i n t i ;
∗y = 1 . 0 ;
f o r ( i = 0 ; i < n ; i = i +1) {
∗y = ∗y ∗ x [ i ] ;

}

}

(b) Generated forward-mode AD code:
# i n c l u d e ” a d t y p e s . h ”
void a d m i n i 1 (DERIV TYPE ∗y , DERIV TYPE ∗x , i n t n )
{

i n t a d i ;
DERIV val ( ∗y ) = 1 .00000 F ;
ADIC ZeroDeriv ( DERIV TYPE ref ( ∗y ) ) ;
f o r ( a d i = 0 ; a d i < n ; a d i = ( a d i + 1 ) ) {

DERIV TYPE ad TempVarprp 1 ;
DERIV TYPE ad TempVarprp 0 ;
double ad TempVar l in 1 ;
double ad TempVar l in 0 ;
double ad TempVardly 0 ;
ad TempVardly 0 = DERIV val ( ∗y ) ∗ DERIV val ( x [ a d i ] ) ;
ad TempVar l in 0 = DERIV val ( x [ a d i ] ) ;
ad TempVar l in 1 = DERIV val ( ∗y ) ;
DERIV val ( ∗y ) = ad TempVardly 0 ;
ADIC SetDeriv ( DERIV TYPE ref ( ∗y ) , DERIV TYPE ref ( ad TempVarprp 0 ) ) ;
ADIC SetDeriv ( DERIV TYPE ref ( x [ a d i ] ) , DERIV TYPE ref ( ad TempVarprp 1 ) ) ;
ADIC Sax Dense1 ( ad TempVar l in 0 , DERIV TYPE ref ( ad TempVarprp 0 ) , DERIV TYPE ref ( ∗y ) ) ;
ADIC Saxpy ( ad TempVar l in 1 , DERIV TYPE ref ( ad TempVarprp 1 ) , DERIV TYPE ref ( ∗y ) ) ;

}

}

Figure 2: (a) Example input code; (b) generated forward-mode differentiated code.

1.4. Contributions

In this work, we describe new automated sparsity detection (ASD) capabilities we have added
to ADIC2 by implementing a new version of the SparsLinC library. We also have interfaced
ADIC2 with ColPack to enable sparse derivative computation. We demonstrate the advantage of
the combined capability using an application from chemical engineering. This is the first time
ColPack has been been interfaced with a source-to-source AD tool.

The rest of the paper is organized as follows. In Section 2 we present an overview of the
process of computing compressed Jacobians using ADIC2 and ColPack, and we briefly describe
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the new version of SparsLinC. In Section 3 we describe the application we used to evaluate the
new capability and we present experimental results. We discuss related work in Section 4 and
conclude in Section 5 with a brief description of future work.

2. Integration Approach

The main steps involved in computing a Jacobian by using ADIC2 are listed in Table 2.
Compressed Jacobian computations require several extra initialization steps and possibly more
expensive Jacobian recovery from the compressed format. These costs are incurred only when
the Jacobian structure changes and are thus normally amortized by the greatly reduced cost of
computing multiple Jacobians.

Table 2: Steps required for computing a dense (left) and a compressed sparse (right) Jacobian using ADIC2 and ColPack.

1. Initialization
• Specify independent and dependent

variables (create identity seed ma-
trix for full Jacobian).

2. Compute derivatives.
3. Extract derivatives for use in later com-

putations (simple copy).

1. Initialization
• Specify independent and dependent variables.
• Compute sparsity pattern (SparsLinC).
• Construct graph and perform coloring (ColPack).
• Create compressed seed matrix.

2. Compute derivatives.
3. Extract derivatives for use in later computations.
• Recover from compressed format (ColPack)

Sparsity detection. Sparsity detection techniques in AD can be classified as static or dynamic,
depending on whether analysis is performed at compile time or runtime. For an example of a
static technique in the context of a source transformation–based AD tool, see [18]. For dynamic
techniques, two major approaches can be identified: sparse vector–based and bit vector–based.
The sparse vector–based approach has the advantage over bit vector–based approaches in that it
requires less memory. But it is potentially slower because it involves dynamic manipulation of
sparse data structures. We have initially adopted the sparse vector–based approach and imple-
mented it in the SparsLinC library. Previous versions of the SparsLinC library have been used
by ADIFOR [19] and ADIC1 [20] to support sparse dynamic storage of derivatives. We reim-
plemented SparsLinC completely for ADIC2, enabling both runtime sparsity detection (without
derivative computations) and sparse vector–based derivative computations. Internally, SparsLinC
defines a data structure that consists of a set of integers called the index set for each active vari-
able. Entries in the set are the indices of the nonzero elements within the dense gradient array
of the original DERIV TYPE if DERIV TYPE is used. In the ASD version of SparsLinC, the
ADIC2-generated functions for operations on dense arrays were rewritten to instead insert or
remove elements of the index set. For example an axpy2 operation Y ← Y + α1 ∗ X1 + α2 ∗ X2 is
implemented in SparsLinC to insert the union of the index sets of X1 and X2 respectively into the
index set of y. Running ADIC2 with the SparsLinC library results in a data structure containing
the sparsity structure of the Jacobian represented as sets of nonzero elements.

Coloring and seed matrix generation. The sparsity pattern produced by ADIC2 and SparsLinC
serves as an input to ColPack. The input is used by ColPack to construct a suitable graph, com-
pute an appropriate coloring, and, using the coloring, obtain a Jacobian seed matrix. Internally,
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the compressed Jacobian is stored in statically allocated dense arrays (the size of each array is
equal to the number of colors). ColPack provides the nonzero entries of the original (uncom-
pressed) Jacobian through its recovery routines.

3. Experimental Evaluation

3.1. Example Application

Liquid chromatography is a frequently used purification technique in the chemical industry
to separate products that are thermally unstable or have high boiling points, where distillation
is inapplicable. In liquid chromatography, a feed mixture is injected into one end of a column
packed with adsorbent particles and then pushed toward the other end with a desorbent (such as
an organic solvent). The mixture is separated by making use of the differences in the migration
speeds of components in the liquid. Simulated moving bed (SMB) chromatography is a technique
used to mimic true moving bed (TMB) chromatography, where the adsorbent moves in a counter-
current direction to the liquid in a column [21].
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as axial mixing of components), Simulated Moving Bed (SMB) chromatography, a pseudo
counter-current process that mimics the operation of a TMB process, is used instead [14].

An SMB unit consists of several columns
connected in a series. Fig. 1 shows a sim-
plified model of an SMB unit with six
columns, arranged in four zones, each of
which consists of Ndis compartments. In
the figure, feed mixture and desorbent are
supplied continuously to the SMB unit at
inlet ports, while two products, extract and
raffinate, are withdrawn continuously at
outlet ports. The four streams, feed, des-
orbent, extract, and raffinate, are switched
periodically to adjacent inlet/outlet ports,
and rotate around the unit. Due to this cyclic
operation, SMB never reaches a steady
state, but only a Cyclic Steady State (CSS),
where the concentration profiles at the begin-
ning and at the end of a cycle are identical.

PSfrag replacements

Q1

Q2,3

Q4,5

Q6

!Feed (QFe)Raffinate (QRa)

Desorbent (QDe) !Extract (QEx)

Ndis comp.
︷ ︸︸ ︷

︸ ︷︷ ︸
Ndis comp.

Fig. 1: A simple model of an SMB unit.

Several different goals could be identified in an SMB process, maximizing throughput be-
ing a typical one. This objective is modeled mathematically as an optimization problem with
constraints given by partial differential algebraic equations (PDAEs).

Numerical solution of the PDAEs requires efficient discretization and integration tech-
niques. A straightforward approach here is to integrate the model until it reaches the CSS,
update the operating parameters and repeat until the optimal values are found. To reduce the
computational effort associated with the calculation of the CSS, approaches tailored for cyclic
adsorption processes, where concentration profiles are treated as decision variables, have been
developed. These approaches can be divided into two classes: those that discretize PDAEs only
in space (single discretization) and those that discretize both in space and time (full discretiza-
tion). Single discretization is well suited for complicated SMB processes, since it allows for
the use of sophisticated numerical integration schemes. It results in comparatively small but
dense derivative matrices [5, 18]. Full discretization is the method of choice if the step-size
of the numerical integration can be fixed at a reasonable value [15]. The derivative matrices
involved in the use of full discretization are typically sparse. We consider the computation of
a sparse Jacobian for such a purpose. We use a standard collocation method for the full dis-
cretization of the state equation with nonlinear isotherms. The objective we have considered
here is maximizing the feed throughput, which is achieved by finding optimal values for the
four flow parameters Q1, QDe, QEx, and QFe (see Fig. 1) and the duration T of a cycle.

5 Experimental results

We considered ten Jacobians of varying sizes in our experiments. Table 1 lists the number
of rows (m), columns (n), and nonzeros (nnz) in each Jacobian as well as the maximum,
minimum, and average number of nonzeros per column (κ). The maximum, minimum, and
average number of nonzeros per row in every problem instance are ρmax = 6, ρmin = 2, and
ρ̄ = 5.0. The last column of Table 1 shows the number of colors p used by the two partial
distance-2 coloring algorithms we experimented with—the implementation of Algorithm 4

Figure 3: Simple model of an SMB unit.

An SMB unit consists of several columns connected
in a series. Figure 3 shows a simplified model of an
SMB unit with six columns, arranged in four zones,
each of which consists of Ndis compartments. Feed
mixture and desorbent are supplied continuously to
the SMB unit at inlet ports, while two products, ex-
tract and raffinate, are withdrawn continuously at out-
let ports. The four streams—feed, desorbent, extract,
and raffinate—are switched periodically to adjacent in-
let/outlet ports and rotate around the unit. Because of
this cyclic operation, SMB never reaches a steady state,
but only a cyclic steady state, where the concentration
profiles at the beginning and at the end of a cycle are
identical.

Maximizing throughput is a common goal associated with an SMB process. This objective is
modeled mathematically as an optimization problem with constraints given by partial differen-
tial algebraic equations (PDAEs). The PDAE-constrained optimization problem can be solved by
employing various discretization and integration techniques [22, 23]. We target the case where
an approach tailored for cyclic adsorption processes (where concentration profiles are treated as
decision variables) is used, and the PDAEs are discretized both in space and time (full discretiza-
tion). The derivative matrices involved in the use of full discretization are typically sparse. We
focus in this work on the computation of a sparse Jacobian (of the constraint function) in the
solution of the optimization problem modeling the SMB process.

3.2. Experimental Results

This section presents experimental results of computating the Jacobian of the constraint func-
tion in the SMB application. The resulting full Jacobian dimensions for the problem size we
consider are 4570 × 4580. We compare the derivative computation performance of the ADOL-C
operator overloading approach with the performance of the codes generated by different con-
figurations of ADIC2. We measure 100 Jacobian evaluations because in a typical optimization
algorithm (as well as other types of applications) the Jacobian matrix structure remains the same
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Table 3: Wall-clock time for evaluating the Jacobian of the constraint function 100 times, and the ratio between the
wall-clock time for computing a single J (including a breakdown of overhead) using different AD approaches and the
original function time (Row 1). The recurring costs for different AD techniques, represented by 100 J evaluations, are
highlighted in bold font. Unhighlighted lines represent one-time overheads.

ADOL-C ADIC2
Time (sec) Ratio Time (sec) Ratio

1. Constraint function evaluation 0.000156 1 0.000156 1
2. Dense J (total for 100, vector) 359.96 23,074.55 1195.72 76,649.03
3. Sparse J (total for 100, SparsLinC) – – 19.34 1,239.57
4. Sparse J (total for 100, AD Tool+ColPack) 1.8630 116.98 1.3263 77.56

Sparse J computation breakdown:
4.1. Sparsity detection 0.0260 166.57 0.0706 452.53
4.2. Seed matrix computation (total) 0.0121 77.57 0.0488 312.74

4.2.1 Graph construction 0.0097 62.37 0.0461 295.69
4.2.2 Graph coloring 0.0019 11.83 0.0022 13.92
4.2.3 Seed collection 0.0005 3.37 0.0005 3.13

4.3. Compressed J (vector) 1.77 113.40 0.68 43.34
4.4. Recovery 0.055 3.58 0.53 34.03

for multiple evaluations of the Jacobian. The performance results are summarized in Table 3.
The experiments were conducted on a four-processor server with AMD 8431 six-core 2.4 GHz
processors with 256 GB of DDR2 667MHz RAM, running Linux kernel version 2.6.18 (x86 64).
All measurements are for serial code.

The ”Ratio” columns contain the costs for the different AD computation approaches and
some of their constituent steps, normalized by the constraint function computation time shown
in Row 1. Row 2 shows the performance of a 100 full dense Jacobian evaluations, without ex-
ploiting sparsity. In the ADIC2 case, this normally means that each active variable is associated
with a 4580-element statically allocated array for storing the partial derivatives w.r.t. the 4, 580
independent variables. The constraint function implementation declares a large number of in-
termediate temporary arrays, which causes the ADIC2-generated code to overrun stack space
when the differentiated function is called. Therefore, we used dynamic memory allocation for
temporaries in the dense case shown in Row 2; this approach is slower than using static arrays,
but is nevertheless the only feasible dense computation option for this code.

Rows 3 and 4 show the total times for 100 Jacobian evaluations using two principally differ-
ent approaches: Row 3 uses sparse vectors to store only nonzero Jacobian values, while Row 4
uses the graph-coloring capabilities of ColPack to produce a compressed dense Jacobian repre-
sentation with only 8 columns corresponding to the 8 colors determined during the coloring.

In the coloring-based approach, ADIC2 offers two choices for computing the compressed
Jacobians while exploiting sparsity, which can be employed in Row 4.3 in Table 3: (A) dense
scalar gradient (most similar in performance to using finite differences) with coloring, and (B)
dense vector-gradient compressed J computation using coloring (this is the version included in
the table Row 4). The time for computing J by using approach (A) is not included because (B)
was 2 times faster, as can be expected since it employs array derivative accumulation operations
rather than scalar operations.

Some of the ADIC-2 compression overhead costs (Rows 4.1 and 4.2) are higher than those for
ADOL-C because of the limitations of the current sparse vector implementation in SparsLinC,
which uses a C++ STL set to implement the index sets. We have not yet optimized the internal
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representation because this is a new SparsLinC implementation. Because the sparsity detection
mechanisms used in ADOL-C and ADIC2+SparsLinC are similar in principle, we should be able
to achieve similar low overheads with future optimizations.

Row 4 shows a breakdown of the sparse computation into the four steps (sparsity detec-
tion, seed matrix computation, compressed Jacobian computation, and recovery) outlined in
Section 1.1. The seed matrix computation step is further broken down into the three underly-
ing substeps: construction of the graph used by ColPack from the internal representation of the
sparsity pattern in the AD tool (Row 4.2.1), coloring of the constructed graph (Row 4.2.2), and
seed matrix collection from the coloring (Row 4.2.3). The significant difference in graph con-
struction times (Row 4.2.1) between ADOL-C and ADIC2 is caused by the differences in the
underlying data structures used by each tool to represent sparsity patterns. The graph construc-
tion for the ADOL-C case (which uses compressed row format using simple arrays) is faster than
the ADIC2 case (which uses STL data structures via the current implementation of SparsLinC,
as described in Section 2).

Overall, the computation of the compressed ADIC2-generated vector-mode Jacobian is about
40% faster than the ADOL-C compressed Jacobian computation for multiple evaluations of J
despite the relatively higher overhead costs for the sparsity detection, seed matrix construction,
and recovery steps in the current ADIC2-SparsLinC implementation.

4. Related Work

Jacobian or Hessian sparsity can be detected either at runtime or statically, or through a hy-
brid static/runtime approach. Runtime ASD is normally implemented through the propagation
of bitvectors or similar structure containing the sparsity information [24]. A number of AD tools
support runtime ASD (e.g., ADOL-C, ADIC version 1, and TAF). Our current approach is per-
haps most similar to the sparsity detection approach in TAF [25], which transforms the original
function computation into a code that propagates bitvectors and combines them by logical “or”
operations. In our current implementation, we rely on STL sets instead of bitvectors and, at
present generate only forward-mode sparsity detection code.

ColPack was interfaced with ADOL-C in previous related work [26]. In that work, ADOL-
C acquired a sparsity pattern detection technique for Jacobians based on propagation of index
domains. The sparsity detection capability previously available in ADOL-C was based on bit
vectors. The detection technique based on index domains is a variant of the sparse-vector ap-
proach; the technique additionally strives to minimize dynamic memory management cost in the
context of AD via operator overloading. Experiments carried out in [26] on Jacobian compu-
tation showed that the sparsity pattern detection step (based on index domains) was the most
expensive of the four steps of the procedure for sparse derivative computation outlined in Sec-
tion 1.1—it accounted for nearly 55% of the total runtime. When bit vectors were used, the
detection step was even more expensive, in terms of both runtime and memory requirement. The
idea of index domains propagation was extended to the detection of sparsity patterns of Hes-
sians and implemented in ADOL-C in another work [27]. The capability was used together with
ColPack to compute sparse Hessians arising in an optimal electric power flow problem [28].

The pioneering work on graph coloring software for sparse derivative computation was done
by Coleman, Garbow, and Moré in the mid-1980s [29, 30]. They developed Fortran software
packages for estimating Jacobians and Hessians by using finite differencing. ColPack is devel-
oped to support both AD and FD and is implemented in C++ with efficiency, modularity, and
extendibility as design objectives; indeed for some computational scenarios (see Table 1), it uses
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more accurate coloring models and algorithms than those used in [29, 30]. Recently, Hasan, Hos-
sain, and Steihaug [31] presented preliminary work on a planned software toolkit for computing
a Jacobian (using a direct method) when the sparsity pattern is known a priori.

5. Conclusions and Future Work

We demonstrated the advantages of exploiting sparsity in the computation of sparse Jacobians
via source-transformation based AD using an optimization problem in chromatographic separa-
tion as a case study. Our approach involved the combined use of the newly redesigned AD tool
ADIC2 and the software package ColPack, comprising graph coloring and related functionalities
for sparse derivative computation.

We implemented automated sparsity detection using a new version of SparsLinC. We plan to
optimize the performance of SparsLinC to reduce the overhead of the compression process by
employing static analysis and also improving the implementation of the runtime library.

We provided a minimal interface between ADIC2 and ColPack sufficient for Jacobian com-
putation by unidirectional compression. We plan to implement interfaces needed for Hessian
computation and Jacobian computation by bidirectional compression, where both the forward
and reverse modes of AD are employed.

We also plan to incorporate the compressed Jacobian capabilities into the PETSc numerical
toolkit [32, 33, 34] by building on the existing PETSc-ADIC2 integration [35].
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[4] B. M. Averick, J. J. Moré, C. H. Bischof, A. Carle, A. Griewank, Computing large sparse Jacobian matrices using
automatic differentiation, SIAM J. Sci. Comput. 15 (2) (1994) 285–294.

[5] A. Gebremedhin, ColPack Web Page, http://www.cscapes.org/coloringpage/.
[6] A. Gebremedhin, F. Manne, A. Pothen, What color is your Jacobian? Graph coloring for computing derivatives,

SIAM Review 47 (4) (2005) 629–705.
[7] A. Gebremedhin, A. Tarafdar, F. Manne, A. Pothen, New acyclic and star coloring algorithms with applications to

Hessian computation, SIAM J. Sci. Comput. 29 (2007) 1042–1072.
[8] A. Griewank, D. Juedes, H. Mitev, J. Utke, O. Vogel, A. Walther, ADOL-C: A package for the automatic differen-

tiation of algorithms written in C/C++, Technical Report, Technical University of Dresden, Institute of Scientific
Computing and Institute of Geometry (1999).
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